
Offa

Offa

Berichte und Mitteilungen zur Urgeschichte, Frühgeschichte

und Mittelalterarchäologie

Band 67/68 · 2010/11

Herausgegeben

vom Institut für Ur- und Frühgeschichte der Christian-Albrechts-Universität zu Kiel und dem Archäologischen Landesmuseum der Stiftung Schleswig-Holsteinische Landesmuseen Schloss Gottorf, Schleswig sowie dem Archäologischen Landesamt Schleswig-Holstein, Schleswig durch

CLAUS von CARNAP-BORNHEIM, Schleswig, JOHANNES MÜLLER und ULRICH MÜLLER, beide Kiel

Gedruckt mit Unterstützung durch den Verein zur Förderung des Archäologischen Landesmuseums e.V.

Die wissenschaftlichen Beiträge in der Offa-Zeitschrift unterliegen einem Peer-Review durch auswärtige Gutachter.

Redaktion: Anke Wesse, Kiel Technische Redaktion und Umschlagentwurf: Holger Dieterich und Ines Reese, Kiel

> ISSN 0078-3714 ISBN 978 3 529 09310 4

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlages. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung in und Verarbeitung durch elektronische Systeme.

© Wachholtz Verlag - Murmann-Publishers, Neumünster/Hamburg 2014

www.wachholtz-verlag.de

INHALTSVERZEICHNIS

Hungrige Hunde jagen am besten – Nahrungsgrundlagen mesolithischer und neolithischer Hunde nach Isotopenverhältnissen
MAGDALENA WIECKOWSKA-LÜTH, WALTER DÖRFLER and WIEBKE KIRLEIS Lake Level Change and its Influence on Human Settlement on Islands in the Holstein Lake District, Schleswig-Holstein
HELLE VANDKILDE Cultural Perspectives on the Beginnings of the Nordic Bronze Age
JULIAN LAABS Ein Beitrag zur sozioökonomischen Differenzierung Aunjetitzer Bestattungssitten auf regionaler und überregionaler Ebene. 79
JUTTA KNEISEL und SIGNE RODE Ein bronzezeitlicher Grabhügel in Kronsburg-Glinde, Bredenbek LA 29, Kreis Rendsburg-Eckernförde
Anna Elena Reuter, Ingo Lütjens und Wiebke Kirleis Eine zweite Ernte? Getreide und Sammelpflanzen des eisenzeitlichen Fundplatzes Wittenborn LA 72, Kreis Segeberg
Товіаs Schade Das wikingerzeitliche Gräberfeld von Kosel-Ost (Kosel LA 198), Kreis Rendsburg-Eckernförde 203
Buchbesprechungen
Dirk Mahsarski, Herbert Jankuhn (1905–1990). Ein deutscher Prähistoriker (<i>Christian Gildhoff</i>) 323
Ulla Münch, Quellenkritik als eingrenzender Faktor der Archäoprognose. Archäoprognose Brandenburg III (<i>Nils Müller-Scheeßel</i>)
Inge Bødker Enghoff, Regionality and biotope exploitation in Danish Ertebølle and adjoining periods (<i>Dirk Heinrich</i>)
Jens Schneeweiß, Die Siedlung Čiča in der westsibirischen Waldsteppe I (<i>Jutta Kneisel</i>)
Vivian Wangen, Gravfeltet på Gunnarstorp i Sarpsborg, Østfold (<i>Jutta Kneisel</i>)
Deborah Barbara Karl-Brandt, Frauenschmuck der späten Bronzezeit und vorrömischen Eisenzeit in Horten des südlichen Nordeuropas (<i>Jutta Kneisel</i>)
Felix Biermann (Hrsg.), Der Peeneraum zwischen Frühgeschichte und Mittelalter (<i>Torsten Kempke</i>) 343
Karl-Heinz Willroth/Jens Schneeweiß (Hrsg.), Slawen an der Elbe (Donat Wehner)

Maria Lityńska-Zając u. a., Stradów 2. Materiały archeobotaniczne i archeozoologiczne (Aikaterini Glykou/Eva Mackowiak/Donat Wehner)
Ines Spazier u. a., Wolkenberg. Die archäologische Untersuchung in der Ortslage von Wolkenberg/Niederlausitz (<i>Felix Biermann</i>)
Anne Birgitte Sørensen, Østergård – Vikingetid & Middelalder (Felix Rösch)
Tagungsbericht "Castle phenomena and more …", Universität Aarhus 2012 (Rainer Atzbach)
Harald Witthöft, Die Lüneburger Saline. Salz in Nordeuropa und der Hanse vom 12.–19. Jahrhundert (<i>Sven Rabeler</i>)
Alice Kaltenberger, Keramik des Mittelalters und der Neuzeit in Oberösterreich (<i>Andreas Heege</i>) 362

Hungrige Hunde jagen am besten Nahrungsgrundlagen mesolithischer und neolithischer Hunde nach Isotopenverhältnissen

Von Jörg Ewersen und Stefan Ziegler¹

Einleitung

Der Übergang vom Jäger und Sammler zum Bauern und Viehzüchter ist eine der tiefgreifendsten und vielfältigsten Veränderungen in der Entwicklung der Menschheitsgeschichte. Dieser Entwicklungsprozess des Menschen wurde durch domestizierte Wölfe begleitet, den späteren Haushunden. Sie entwickelten sich während dieser Zeit und danach zum wohl vielseitigsten Haustier, das die Domestikationsbestrebungen des Menschen je hervorgebracht haben. Seine Entwicklungsgeschichte ist für den in der vorliegenden Untersuchung relevanten Zeitraum des Meso- und Neolithikums schon weit fortgeschritten. Die daraus resultierende und heute vielfach nicht fokussierte sozioökonomische Bedeutung des Hundes kann auch als eine der Triebfedern in einem Entwicklungsprozess angesehen werden, in dem letztlich die Wechselwirkung zwischen Mensch und Hund eine nicht zu unterschätzende Rolle für die kultur- und naturgeschichtliche Entfaltung des Menschen selbst darstellt. Hunde waren Zeuge des einschneidenden Wechsels in der ökonomischen Versorgung der Menschen während des ausgehenden Mesolithikums bis in das Neolithikum hinein. In dieser Zeit muss sich parallel auch die wirtschaftliche Bedeutung des Hundes gravierend geändert haben. Seine Aufgaben vervielfältigten sich und wurden den Bedürfnissen der Siedler und damit der neuen Siedlungsökonomie angepasst. Für den Menschen war der Hund in dieser Zeit ein Garant für den Schutz der Siedlungen sowie für den Nahrungserwerb, sogar wenn er, der Hund, letztlich selbst die Nahrung darstellte (z. B. EWERSEN/RAMMINGER 2010; EWERSEN/RAMMINGER in Vorbereitung).

Das im Folgenden dargestellte Projekt sollte zum einen untersuchen, welche (nahrungs-)wirtschaftliche Bedeutung der Haushund in meso- und neolithischen Nutzungsräumen wie in Siedlungen oder auf Plätzen mit archäologisch rituell eingestuftem Charakter hatte. Zum anderen wurde die Frage aufgeworfen, ob die Nahrungsaufnahme von Hunden und Wölfen anhand von Isotopenwerten differenziert werden kann und ob die Nahrungsaufnahme von Haushunden möglicherweise regionale Unterschiede aufweist.

¹ "Hungrige Hunde jagen am besten" aus: Astrid Lindgren, Kalle Blomquist, Kap. 4.

Wir danken der Deutschen Forschungsgemeinschaft für ihre umfangreiche Projektförderung, ohne die unsere Un-

tersuchung nicht hätte durchgeführt werden können (DFG-Projekt RA 1733, "Die wirtschaftliche Bedeutung des Hundes im Neolithikum").

Material und Methode

Für die von der DFG geförderte Untersuchung zur Bedeutung des Hundes im Neolithikum wurde Skelettmaterial (Knochenzahl [KNZ]: 3 496) von insgesamt 35 Fundplätzen zwischen Dänemark und der Schweiz zur Verfügung gestellt (Abb. 1)². Die Untersuchung der Skelettreste galt einerseits den Gerätespuren an den Knochen und andererseits den Isotopenverhältnissen von $\delta^{15}N$ (Stickstoff) und $\delta^{13}C$ (Kohlenstoff). Weitere Proben von Haus- und Wildschweinen sowie vom Wolf dienten als Kontrollgruppe, da die Gegenüberstellung der Hunde mit anderen Omnivoren einen Einblick in die Stellung der Hunde innerhalb der sie umgebenden Trophienetze erlaubt.

Die Auswertung der Untersuchungsergebnisse gliedert sich in zwei Abschnitte: Ein Teil befasst sich mit der nördlichen Region von Süddänemark bis nach Niedersachsen (EWERSEN/SCHMÖLCKE 2013) und der zweite mit der Region von Niedersachsen bis in die Schweiz (EWERSEN/RAMMINGER in Vorbereitung). Die vorliegende Arbeit stellt eine Zusammenfassung der Ergebnisse der Isotopenanalyse dar, für die Material von 35 Fundplätzen berücksichtigt werden konnte (Tab. 1).

Der zeitliche Rahmen des Projektes umfasst überwiegend Fundplätze aus der Zeit zwischen dem Präboreal bis in das ausgehende Neolithikum. Außerordentliche Funde datieren bis in das Paläolithikum zurück. Da die chronologische Einordnung der steinzeitlichen Fundorte nicht zuletzt aufgrund der Mehrphasigkeit vieler Fundplätze und -stellen häufig nur sehr schwer fassbar ist und sich die chronologische Situation in der Literatur als ein "terminologische(r) Irrgarten zwischen der Schweiz und Skandinavien" (FISCHER 1976, 183) abzeichnet, können eng-chronologische Aspekte weder Gegenstand der vorliegenden Arbeit sein noch können sie anhand von Fundangaben auf den Skelettfunden selbst umgesetzt werden. An dieser Stelle muss daher darauf hingewiesen werden, dass die Datierung der in dieser Studie untersuchten Skelettreste aus-

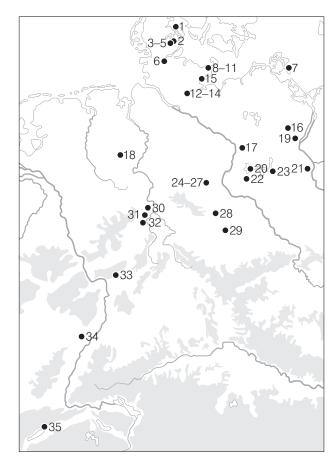


Abb. 1. Kartierung der im Text genannten Fundorte (siehe auch S. 7 ff. Tab. 1). 1 Bundsø-Flintholm. 2 Neukirchen-Bostholm. 3 Fuchsberg-Südensee. 4 Bistorf LA 11. 5 Rüde 2. 6 Lohe-Föhrden LA 4. 7 Baabe 2/Rügen. 8 Wangels LA 505. 9 Siggeneben-Süd. 10 Rosenhof LA 58. 11 Heringsdorf-Süssau. 12 Heidmoor LA 246. 13 Bad Oldesloe-Wolkenwehe LA 154. 14 Schlamersdorf LA 5. 15 Neustadt LA 156. 16 Falkenwalde 47. 17 Friesack IV. 18 Hüde I/Dümmer. 19 Flemsdorf. 20 Potsdam-Satzkorn. 21 Klessin, Fdpl. 3. 22 Niedergörsdorf-Bochow. 23 Madlitz-Wilmersdorf. 24 Hohenwarsleben. 25 Eilsleben. 26 Quenstedt. 27 Derenburg. 28 Salzmünde. 29 Weißenfels. 30 Kassel-Calden, Erdwerk. 31 Altendorf. 32 Buhlen. 33 Niederdorfelden. 34 Herxheim. 35 Twann.

Den folgenden Institutionen gebührt unser Dank für die freundliche Kooperation und Bereitstellung von Untersuchungsmaterial (in alphabetischer Reihenfolge): dem Archäologischen Dienst des Kantons Bern, dem Brandenburgischen Landesamt für Denkmalpflege und Archäologisches Landesmuseum Brandenburg in Zossen, dem GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, dem Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt in Halle, dem Landesamt für Kultur und Denkmalpflege Mecklenburg-Vorpommern in Schwerin, der Landesarchäologie Rheinland-Pfalz Außenstelle Speyer sowie den Mitarbeitern des DFG-Projektes "Siedlung und Grubenanlage Herxheim", dem Leibniz-Labor für Altersbestimmung und Isotopenforschung der Christian-Albrechts-Universität zu Kiel, der Museumslandschaft Hessen Kassel, dem Niedersächsischen Institut für historische Küstenforschung in Wilhelmshaven, dem Niedersächsischen Landesmuseum Hannover, dem Regionalmuseum Wolfhagen sowie der Stiftung Schleswig-Holsteinische Landesmuseen Schloss Gottorf in Schleswig. – Herzlich gedankt sei auch Frederick Feulner für wertvolle Hinweise.

nach Literaturlage. ¹ GLYKOU 2011; ² HEGGE 2010, 11; HIRSCH u.a. 2007, 13; ³ MEURERS-BALKE 1983, 109f; ⁴ HARTZ 1999, 43f. - GOLDHAMMER 2008, 144ff; ⁵ HARTZ 2005, 59f; SCHWAGER 1967, 54 - HARTZ u.a. 2004/05 - MISCHKA u.a. 2004/05; ¹⁴ CLAUSEN 1989 - 1996, ¹⁵ unveröff; ¹⁶ FURGER u.a. 1977, 87 - HAFNER/SUTER 2003, ¹⁷ BEHRENS 1953; ¹⁸ JARE-DAN 1954 – RAETZEL-FABIAN 2000 b; ²⁵ BIERMANN 2003; ²⁶ MÜLLER 1985; ²⁷ LA Sachsen-Anhalt, freundl. Mitt. M. Krecher; ²⁸ unveröff., Brandenburg. Landesamt Denkmalpfl. u. Arch. Landesmus; ²⁹ BECKER 1998, 44; ³⁰ JÖRIS 2001; ³¹ CZIESLA 1999; ³² NOBIS 1962, 17; ³³ LÜTTSCHWAGER 1967, 54 - FEULNER 2012; ³⁴ HEINRICH 1993 - HARTZ 1997 - BOKELMANN Tab. 1. In der Untersuchung berücksichtigte Fundorte mit Skelettresten von Hunden, Wölfen und/oder Schweinen. Abkürzungen: FN Frühneolithikum; MN Mittelneolithikum; TBK Trichterbecherkultur; EGK Einzelgrabkultur; SN Schnurkeramikkultur; GB Glockenbecher; EZ Eisenzeit; MA Mittelalter. Alle angegebenen Isotopenwerte in ‰, Datierungen ⁶ Нока 1987, 153 ff.; ⁷ Меиrers-Валке u. a. 1985; ⁸ Нопка 1987, 91 ff.; ⁹ Gramsch 2000, 60 ff.; ¹⁰ Нübner 1980; ¹¹ Еwersen 2007, 20 f.; ¹² Јонамѕсом/Јонамѕсом 1982, 35; ¹³ Lüтт-CKI/SOMMERFELD 2007; ¹⁹ GÖRSDORF 1996 – FRIEDRICH 2009, 133ff.; ²⁰ DÖHLE 1994; ²¹ ZEEB-LANZ u. a. 2009 – TURCK u. a. 2012; ²² MEYER 1999; ²³ RAETZEL-FABIAN 2000 a; ²⁴ JOR-1994, 39; 35 TEICHERT 1974, 120. Chronologische Einordnung nach MÜLLER 2001; MÜLLER u. a. 2012. – * Bei der KNZ handelt es sich um die Zahl der untersuchten Fundstücke von Hunden. Die im Vergleich zu den in der Literatur abweichenden Knochenzahlen bei einigen Fundplätzen resultieren beispielsweise aus zwischenzeitlichen Neufunden, während von früher gegrabenen Lokalitäten nicht immer sämtliches Knochenmaterial zur Verfügung stand. Wolf und Schwein wurden nur beprobt, nicht aber auf Spuren hin untersucht.

Fundorte Zahlen in Klammern siehe Fundortkartierung Ahh 1		Datierungsrahmen	KNZ^*	Zahl der höchst Proben 815N	höchst 8 ¹⁵ N	tiefst 8 ¹⁵ N	mittel 815N	Zahl der Proben	Zahl der höchst Proben 813C	tiefst 813C	mittel 813C	Ü
Hund Octobe-Kiistanfundulätza	Wertespanne insgesamt			185	14,15	4,21		176	-9,34	-25,11		
Neustadt I.A 156 Kr. Ostholstein (15)	Erteballe/FN Ia ¹	4500-3800 ca1BC	152	10	14.14	8 45	18	6	-12.50	-19.98	-14.64	"
Baabe 2. I.kr. Vornommern-Rijgen (7)	Ertehalle/FN ²	4313-4105/4014-3833 cal BC	30	9	13.84	13.13	13.48	, ,	-12.19	-16.93	-13.73	3.7
Siggeneben-Süd, Kr. Ostholstein (9)	FN Ib ³	3900-3700BC	5	. 6	10,61	8,51	9,25	. 6	-13,18	-18,87	-16,78	3,2
Rosenhof LA 58, Kr. Ostholstein (10)	Ertebølle/FN I ⁴	3760-3640 cal BC	99	10	12,05	10,09	11,10	10	-9,34	-15,47	-11,46	3,1
Wangels LA 505, Kr. Ostholstein (8)	$MN/MN V^5$	2800-2500 BC	29	9	9,43	7,65	8,42	9	-18,57	-21,80	-19,99	3,18
Bundsø-Flintholm, Dänemark (1)	MN III-IV ⁶	2600-2300 BC	2	1	8,30	8,30	8,30	1	-20,75	-20,75	-20,75	3,3
Neukirchen-Bostholm, Kr. Schleswig-Flensburg (2)	$MN III-IV^7$	2500-2400 BC	5	2	9,12	8,25	8,68	2	-20,75	-20,51	-20,63	3,3
Heringsdorf-Süssau, Kr. Ostholstein (11)	MN III-IV ⁸	2600-2300 BC	10	8	9,95	11,46	10,46	3	-18,96	-20,14	-19,69	3,2
Summe in der Gruppe und Mittelwerte			299	41	10,93	9,49	10,19	40	-15,78	-19,31	-14,34	3,2
Binnenlandfundplätze mit erkennbarem Bezug zu Gewässern	g zu Gewässern											
Friesack IV, Lkr. Havelland (17)	Mesolithikum ⁹	7750-5000 BC	53	12	13,01	8,28	11,12	12	-20,00	-25,11	-23,76	3,2
Hüde I, Lkr. Diepholz (18)	$Ertebølle/TBK\\ (und Verdacht auf EZ)^{10}$	4390–4030/ 3630–3450 cal BC	28	_	9,50	8,27	9,11	7	-17,19	-20,47	-19,03	3,2
Heidmoor LA 246, Kr. Segeberg (12)	Ertebølle/Neolithikum ¹¹	3900-2800 ca1BC	143	4	66'6	7,45	8,258	4	-20,94	-22,27	-21,73	2,9
Bistorf LA 11, Kr. Schleswig-Flensburg (4)	(Mesolithikum)/FN II/ MN I ¹²	3610-3380 BC	∞	4	11,153	5,05	7,83	3	-19,75	-22,57	-21,48	3,3
Bad Oldesloe-Wolkenwehe LA 154, Kr. Storman (13) FN II/MN Ib-II/III/ $({\rm TBK})/{\rm EGK}, {\rm SN}^{13}$	FN II/MN Ib $-$ II/III/ (TBK)/EGK, SN 13	3500-3300/3200-3100/ 2800-2600/2400-2200 BC	22	rc	69'6	8,39	9,14	rV	-19,46	-21,90	-20,17	3,2
Lohe-Föhrden LA 4, Kr. Rendsburg-Eckernförde (6) $$ Meso-/Neolithikum und Verdacht auf Neuzeit 14	Meso-/Neolithikum und Verdacht auf Neuzeit ¹⁴	nicht sicher datiert	4	1	7,895	4,208	6,176	4	-20,62	-21,02	-20,75	3,2
Niederdorfelden, Main-Kinzig-Kreis (33)	Bandkeramik ¹⁵	5300-5000 BC	52	5	10,83	66,6	10,39	2	-20,19	-20,63	-20,41	3,2

,15 ,21 ,26 ,36 ,33 ,33 ,33 ,23 ,28

39,39

,25

,22

,23

Ä

Tab. 1, Fortsetzung. In der Untersuchung berücksichtigte Fundorte mit Skelettresten von Hunden, Wölfen und/oder Schweinen.

Fundorte Zahlen in Klammern siehe Fundortkartierung Abb. 1		Datierungsrahmen	KNZ*	Zahl der Proben	höchst 8 ¹⁵ N	tiefst \$ ¹⁵ N	mittel δ^{15} N	Zahl der Proben	höchst 8 ¹³ C	tiefst δ^{13} C	mittel δ^{13} C	C:N
Twann, Kanton Bern, Schweiz (35)	Cortaillod Horgen ¹⁶	5200/4300–3900 BC/ 3200–3000 cal BC/ 2700–2650 BC	692	42	10,97	7,61	9,30	40	-20,57	-22,40	-21,37	3,23
Weißenfels, Burgenlandkreis	Baalberger/Salzmünde/	3600-2700 BC	703		9,45	8,36	8,97	^	-19,67	-20,37	-19,94	3,21
Salzmünde, Saalekreis (28)	Bernburger Kultur, Salzmünde (Großgar- tach/Rössen/Schiebzig) ¹⁸	3600–3300 (3100) BC	1097		86'8	8,18	8,45	r.	-19,05	-20,09	-19,41	3,25
Klessin, Lkr. Märkisch-Oderland (21)	Britzer Kultur ¹⁹	3340-3010 calBC	58	2	6,39	8,60	9,03	2	-20,80	-21,42	-21,14	3,27
Summe in der Gruppe und Mittelwerte			2843	86	10,08	7,67	8,89	94	-19,84	-21,66	-20,84	3,23
Binnenlandfundplätze ohne klar erkennbaren Bezug zu Gewässern	n Bezug zu Gewässern											
Eilsleben, Lkr. Börde (25)	Bandkeramik ²⁰	5500-4900 BC	4	1	8,20	8,20	8,20	_	-20,74	-20,74	-20,74	3,22
Herxheim, Lkr. Südliche Weinstraße (34)	Jüngere Bandkerami k^{21}	5300-4950 BC	253	19	11,97	6,38	10,55	19	-17,07	-22,74	-19,55	3,26
Niedergörsdorf-Bochow, Lkr. Teltow-Fläming (22)	MN/(Rössen) ²²	4400-4200 BC	1	1	10,32	10,32	10,32	1	-19,63	-19,63	-19,63	3,11
Kassel-Calden (30)	Michelsberg bis Wartberg ²³	3700–3000 BC	13	10	11,15	7,10	9,31	10	-20,24	-22,21	-20,78	3,25
Altendorf, Lkr. Wolfhagen (31)	Wartberg ²⁴	3350-3090 cal BC	21	3	10,87	8,96	10,10	3	-19,57	-20,29	-19,88	3,22
Derenburg, Lkr. Harz (27)	TRB-MES V (Bernburg) ²⁵	3000–2700 BC	в	1	8,19	8,19	8,19	1	-20,06	-20,06	-20,06	3,20
Quenstedt, Lkr. Mansfeld-Südharz (26)	TRB-MES V (Bernburg) ²⁶	3000–2700 BC	4	1	8,86	8,86	8,86	1	-19,44	-19,44	-19,44	3,20
Hohenwarsleben, Lkr. Börde (24)	TRB-MES V (Bernburg) ²⁷	3642–3521 calBC	39	1	8,28	8,28	8,28	1	-20,06	-20,06	-20,06	3,22
Madlitz-Wilmersdorf, Lkr. Oder-Spree (23)	Neolithikum ²⁸	nicht datiert	5	П	7,73	7,73	7,73	_	-18,08	-18,08	-18,08	3,27
Falkenwalde 47, Lkr. Uckermark (16)	Elb-Havel-Gruppe ²⁹	3200-2800 BC	11	∞	9,30	7,92	8,58	7	-19,05	-20,13	-19,50	3,28
Summe in der Gruppe und Mittelwerte			354	46	9,49	8,19	10,6	42	-19,37	-20,34	-19,76	3,22
Wolf			entfällt									
Bad Oldesloe-Wolkenwehe LA 154, Kr. Stormarn (13) FN II/MN Ib-II/III, SN, $_{\rm GB^{13}}$) FN II/MN Ib-II/III/, SN, GB^{13}	3200-2800 BC/2300 BC	I	-	7,52	7,52	7,52	П	-21,45	-21,45	-21,45	3,39
Buhlen, Lkr. Waldeck-Frankenberg (32)	Spät- Mittelpaläolithikum ³⁰	89000-65000 BP	I	П	7,56	7,56	7,56	1	-20,25	-20,25	-20,25	3,29
Wangels LA 505, Kr. Ostholstein (8)	$MN V^5$	2800-2500 BC	I	1	8,36	8,36	8,36	П	-22,25	-22,25	-22,25	3,18
Neustadt LA 156, Kr. Ostholstein (15)	Ertebølle/FN Ia¹	4500-3800 ca1BC	I	2	8,75	8,43	8,59	2	-20,71	-20,88	-20,80	3,28
Friesack IV, Lkr. Havelland (17)	Mesolithikum ⁹	7750-5000 BC	I	3	8,90	8,37	8;28	3	-19,82	-20,23	-20,06	3,33
Rosenhof LA 58, Kr. Ostholstein (10)	$Erteb ilde{o}lle/FN^4$	3760–3640 cal BC	I	4	12,37	8,89	10,39	4	-14,17	-20,95	-18,32	3,20
Summe in der Gruppe und Mittelwerte				12	8,91	8,19	8,50	12	-19,78	-21,00	-20,52	3,28

Tab. 1, Fortsetzung. In der Untersuchung berücksichtigte Fundorte mit Skelettresten von Hunden, Wölfen und/oder Schweinen.

Fundorte Zahlen in Klammern siehe Fundortkartierung Abb. 1		Datierungsrahmen	KNZ*	Zahl der höchst Proben 8 ¹⁵ N	höchst $\delta^{15} N$	tiefst $\delta^{15} N$	mittel 8 ¹⁵ N	Zahl der höchst Proben δ^{13} C	höchst δ^{13} C	tiefst δ^{13} C	mittel $\delta^{13}C$	C:N
Hausschwein			entfäll									
Kassel-Calden, Erdwerk (30)	Wartberg ²³	3700-3000 BC	ı	2	7,11	6,75	6,93	2	-20,26	-20,82	-20,54	3,22
Friesack IV, Lkr. Havelland (17)	Mesolithikum ⁹	7750-5000 BC	I	1	5,50	5,50	5,50	1	-21,50	-21,50	-21,50	3,41
Heidmoor LA 246, Kr. Segeberg (12)	$FN-MN^{11}$	3900-2800 cal BC	I	4	5,48	4,01	4,80	4	-21,28	22,09	-21,75	3,30
Potsdam-Satzkorn, Brandenburg (20)	Jüngere Bandkeramik/ Stichbandkeramik ³¹	~5500-4500 BC	I	-	9,53	9,53	9,53		-20,83	-20,83	-20,83	3,11
Twann, Kanton Bern, Schweiz (35)	Cortaillod Horgen ¹⁶	5200/4300 -3900 BC 3200-3000 cal BC 2700-2650 BC	I	9	7,00	5,95	6,56	9	-20,88	-21,25	-21,03	3,25
Summe in der Gruppe und Mittelwerte				14	6,92	6,35	99'9	14	-20,95	-12,46	-21,13	3,26
Wildschwein			entfällt									
Bistorf LA 11, Kr. Schleswig-Flensburg (4)	$FN I-MN I^{12}$	3610-3380 BC	ı	1	8,47	8,47	8,47	1	-21,66	-21,66	-21,66	3,12
Friesack IV, Lkr. Havelland (17)	Neolithikum ⁹	7750-5000 BC	I	9	6,38	5,79	6,03	9	-21,02	-21,56	-21,38	3,22
Fuchsberg-Südensee, Kr. Schleswig-Holstein (3)	$FN II^{32}$	3500-3300 BC	I	1	4,51	4,51	4,51	1	-21,46	-21,46	-21,46	3,25
Heidmoor LA 246, Kr. Segeberg (12)	$FN-MN^{11}$	3900-2800 calBC	I	3	5,84	5,55	2,67	3	-21,42	-22,88	-22,05	3,34
Rüde 2, Kr. Schleswig-Flensburg (5)	$Erteb \emptyset lle^{33}$	5010-4540 BC	I	1	4,72	4,72	4,72	1	-21,19	-21,19	-21,19	3,34
Schlamersdorf LA 5, Kr. Segeberg (14)	Ertebølle ³⁴	4300-3500 BC	I	1	4,63	4,63	4,63	1	-21,72	-21,72	-21,72	3,37
Twann, Kanton Bern, Schweiz (35)	Cortaillod Horgen ¹⁶	5200/4300-3900 BC 3200-3000 cal BC 2700-2650 BC	1	ω	7,47	6,20	7,04	ω	-20,65	-20,71	-20,68	3,22
Summe in der Gruppe und Mittelwerte				91	6,00	5,70	5,87	16	-21,30	-21,60	-21,45	3,27
Wild- oder Hausschwein			entfällt									
Falkenwalde 47, Lkr. Uckermark (16)	Elb-Havel-Gruppe ²⁹	3200-2800 BC	I	1	7,77	7,77	7,77	1	-21,06	-21,06	-21,06	3,26
Flemsdorf, Lkr. Uckermark (19)	MN/Rössen ³⁵	4500-4300 BC	I	3	9,94	6,72	2,96	3	-20,62	-20,99	-20,83	3,26
Friesack IV, Lkr. Havelland (17)	Mesolithikum ⁹	7750-5000 BC	ı	3	60,9	5,99	5,99	3	-21,63	-23,79	-22,34	3,11
Heringsdorf-Süssau, Kr. Ostholstein (11)	MN III–IV ⁸	3200–3000 BC	I	2	8,37	6,42	7,40	2	-21,66	-21,97	-21,82	3,16
Summe in der Gruppe und Mittelwerte				6	8,04	6,73	7,28	6	-21,24	-21,95	-21,51	3,20
Summe gesamt			3496	236								

schließlich über archäologische Begleitfunde bzw. die Literatur- und/oder Berichtsangaben erfolgte, die einzelnen, hier behandelten Hundeknochen selbst sind nicht naturwissenschaftlich datiert respektive die vorgegebenen Datierungen wurden nicht kontrolliert

Zu den bei der Auswertung der Isotopendaten zu berücksichtigenden allgemein-chronologischen Aspekten kommen noch mögliche geografisch-(groß-) klimatische Prozesse hinzu, die Einfluss auf die Isotopenverhältnisse genommen haben könnten. So zeigte eine statistische Testreihe der vorliegenden Daten, dass einem linearen Regressionsmodel nach der Verhältniswert von ¹³C pro Breitengrad um etwa 0,42 ‰ anstieg. Insgesamt kann die geografische Breite aber nur 15 % der Streuung aller ¹³C-Werte erklären. Die geografische Länge hat dagegen keinen Einfluss auf die Verteilung der ¹³C-Isotopenverhältnisse. Der globale Anstieg des Meeresspiegels mit der Littorina-Transgression führte im Ostseeraum vor etwa 8000 Jahren zu einer Überflutung der Landschaft zwischen Deutschland und Dänemark. Der überflutete Raum war bis dahin durch Flüsse, Binnenseen und Wälder geprägt (Schmölcke u.a. 2007; SCHMÖLCKE/RITCHIE 2010, 1769 ff.). Die Veränderungen der Seespiegel in Mitteleuropa zeigen, dass es zudem zwischen der Mitte und dem Ende des 4. Jts. v.Chr. zu Anstiegen des Wasserniveaus gekommen sein muss (MAGNY 2004). In dieser Zeit, etwa ab dem Beginn des Subboreals um 3800 v. Chr., wurde dabei das sommerwarme und feuchtere Klima des Atlantikums durch ein trockeneres und kühleres Klima abgelöst, wenngleich mit höheren Durchschnittstemperaturen als heute. Diese Vorgänge haben sicherlich auch einen Einfluss auf den Grundwasserspiegel, auf die Biodiversität und darüber hinaus auch über die Veränderungen lokaler Ökosysteme auf die vorliegenden δ¹⁵N und δ¹³C-Werte ausgeübt (Ambro-SE 1991, 300 f.; Gramsch 2002, 189 ff. Abb. 3; Gold-HAMMER 2008, 23 f.). Dies gilt in besonderem Maße für die Isotopenwerte älterer Fundplätze im Verhältnis zu den Werten der jüngeren Plätze und zu denen, die heute in Küstennähe liegen und sowohl eine Nutzung in der Ertebøllezeit als auch während des Neolithikums ausweisen, was am Beispiel von Twann (Schweiz) zu sehen sein wird.

Das aus über 400 Skelettproben von Caniden und Suidae nach einem leicht abgeänderten Verfahren nach Ambrose (1990, 431 ff.) extrahierte Kollagen wurde im GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel in einem gekoppelten Analysesystem mit einem Elementar-Isotopen Ratio Massenspektrometer-System (EA-IRMS) und einem

Beim Stickstoff (N) lässt der δ¹⁵N-Verhältniswert³ Rückschlüsse auf die Herkunft von pflanzlichem und tierischem Protein in der Nahrung zu (Chrisholm/ Nelson 1982), womit Hunde als Aas- und Fleischfresser und (vor-)letztes Glied in einer Nahrungskette relativ angereicherte δ¹⁵N-Werte ausweisen, da Stickstoff von Trophiestufe zu Trophiestufe (beispielsweise von Herbivoren zu Carnivoren) zunehmend um etwa 3-4 ‰ fraktioniert wird (z.B. Ambrose 1993; Fizet u.a. 1995; Schwarcz/Schoe-NINGER 1991; SCHOENINGER/DENIRO 1984). Innerhalb der Nahrungsnetze ist das atmosphärische Inertgas N2 die wichtigste Quelle für Stickstoff, dessen Moleküle durch eine energiereiche Bindung zusammengehalten werden. Da Prokaryoten erforderlich sind, die den Stickstoff für weitere Organismen verfügbar machen, steht der Stickstoffkreislauf unter anderem in Abhängigkeit zur Bodenzusammensetzung, zum Bewuchs und zum Klima. Weiterhin verfügen Konsumenten mariner und limnischer Nahrung über höhere Stickstoffsignale aufgrund komplexerer Nahrungsketten im aquatischen Milieu, wobei zudem Stickstoff in Süßgewässern über akkumulierte tote Biomasse in der Abbauzone freigegeben werden kann (SCHMIDT 1983, 102; 116; France 1995; Harrod/Lampert 2006).

Kohlenstoff wird aus dem CO2 der Luft durch die Photosynthese der Pflanzen organisch gebunden. Da das ¹³CO₂ Molekül langsamer reagiert als ¹²CO₂, tritt bei der primären CO2-Bindung ein erheblicher Isotopeneffekt auf, wobei das schwerere ¹³C diskriminiert wird. Die dadurch auftretende ¹³C-Abreicherung in organisch gebundenem Kohlenstoff ist jedoch nicht in jeder Pflanze gleich, sondern das Ausmaß hängt von dem Photosynthesetyp ab, wobei so genannte C₄-Pflanzen ¹³CO₂ deutlich weniger (bis zu 15 ‰) diskriminieren. Unterschiede bei den δ^{13} C-Werten werden auch innerhalb einer Pflanze in verschiedenen Pflanzenteilen beobachtet (bis zu 2 %), Standortfaktoren wie beispielsweise CO₂-Partialdruck, Lichtintensität, Wasser- sowie Nährstoffangebot oder Temperatur ausgelöst. Ferner differieren δ^{13} C-Werte von C₃-Pflanzen in (tropen-)feuchten, geschlossen-laubüberdachten Waldbiotopen von de-

Massenspektrometer Finnigan Delta Plus auf das Isotopenverhältnis von Kohlenstoff (δ¹³C) und Stickstoff (δ¹⁵N) hin untersucht. Die Messung erfolgte mit einer Kalibrierung der Referenzgase (IAEA-N-1 und NBS 22), die ihrerseits gegen PDB¹³C und Nair geeicht waren. Von allen Proben entsprachen 236 den Anforderungen an das molekulare Verhältnis beider Elemente zueinander zwischen 2,8–3,6 (DENIRO u. a. 1985, 6f.; DENIRO 1985, 808).

 $^{^3}$ Wenn nicht anders angegeben, sind alle im Folgenden aufgeführten Verhältniswerte von $\delta^{\scriptscriptstyle 15}N$ und $\delta^{\scriptscriptstyle 13}C$ ‰-Werte.

nen offener Geländeformen, da der so genannte Canopy-Effekt eine ausreichende Durchmischung des biogenen und atmosphärischen Kohlendioxyds verhindert (z. B. Lowdon/Dyck 1974; DeNiro/Epstein 1978, 495; DeNiro u. a. 1985; Ambrose 1991, 311 ff.; 1993, 59 ff.). Auch besteht der Verdacht, dass die ¹³C-Fraktionierung möglicherweise nicht geeignet ist, zuverlässig Pflanzen (respektive ihren unterschiedlichen Photosyntheseprozessen entsprechend) aus terrestrischen und aquatischen Systemen voneinander zu trennen (Keeley/Sandquist 1992) bzw. stehen auf aquatische Systeme bezogen die Werte wahrscheinlich noch in Abhängigkeit zur Wasserbewegung (France 1995).

Ferner bleibt offen, ob Messreihen aus komplexen Biomineralien, wie beispielsweise Knochengeweben, ohne Standardisierung des Verfahrens miteinander verglichen werden können. Einzelne Ringmessungen von δ^{15} N- und δ^{13} C-Isotopenverhältnissen unter

anderem an Elefantenelfenbein zeigten zuletzt, anders als bei früheren Untersuchungen (FISCHER u.a. 2007, 2134), dass – je nach angewendetem Verfahren - mit unterschiedlichen massenspektrometrischen Messergebnissen gerechnet werden muss (EWERSEN/ ZIEGLER im Druck). Trotz dieser vielschichtigen Parameter bieten die δ¹³C-Signaturen die Möglichkeit, die Herkunft und Quantität der konsumierten Ressourcen weitergehend zu differenzieren und das nicht nur dahingehend, ob sie aus einem aquatischen/maritimen oder terrestrischen Milieu stammen (z.B. Harrod/Lampert 2006). Abschließend muss an dieser Stelle noch darauf hingewiesen werden, dass für die Analyse der δ¹³C-Daten aus mathematisch-statistischen Gründen sowohl auf korrigierte als auch auf nicht korrigierte δ¹³C-Werte zurückgegriffen wurde, was jeweils am Ort ausgewiesen ist.

Ergebnisse der Analysen stabiler Isotopen

Tierartliche Trennung

Grundsätzlich stellt sich die Frage, ob es möglich ist, die Omnivoren Wolf (Canis lupus L., 1758), seine Haustierform den Hund (Canis familiaris L., 1758) sowie Wildschwein (Sus scrofa L., 1758) und Hausschwein (Sus domesticus Erx., 1777) anhand ihrer Ernährungswerte glaubhaft zu trennen⁴. Hierzu belegt der Mittelwert aller Isotopendaten der Suidae eine deutliche Tendenz zu wesentlich geringeren δ^{15} N-Werten sowie abgereichertem δ^{13} C im Verhältnis zu den Caniden. Die Werte zwischen jeweils Wild- und Hausschweinen sind kaum zu trennen, variieren aber überwiegend nicht so stark wie die der Hunde und Wölfe (Tab. 2).

Die aufgrund der zumeist im Labor visuell-metrisch erfolgte Trennung von Wild- und Hausschweinen, deren Überprüfung mithilfe von aDNA-Analysen in einzelnen Fällen andere Zuordnungen erbringen kann (vgl. Krause-Kyora 2011; Krause-KYORA u.a. 2013, 4), zeigt eine Streuung der Werte ohne Gruppierung nach Wild- oder Haustier (Abb. 2). Die Auswertung der δ¹³C-Werte lässt generell denselben Schluss zu, denn der δ¹³C-Mittelwert aller beprobten Wild- und Hausschweinknochen liegt bei $\bar{x} = -20,00$ (n = 39). Morphometrisch exakt der Haus- bzw. Wildform zugeordnete Knochen erbrachten etwas geringere δ¹³C-Werte (Hausschweine $\bar{x} = -21,70$ [n = 5; 2 Fundplätze], Wildschweine $\bar{x} =$ -21,59 [n=11; 6 Fundplätze]). Auch der t-Test weist auf keinen signifikanten Gruppenunterschied bei

Tab. 2. Zahl der Proben (n), Mittelwert (\bar{x}) , Varianz (v) und Standardabweichung (sd) der Verhältniswerte von $\delta^{15}N$ und $\delta^{13}C$ von Canidae und Suidae.

n		v	sd
- 11		v	- Su
202	9,56	2,644	1,626
12	8,99	1,794	1,339
16	6,04	1,122	1,059
14	6,25	1,805	1,344
39	6,38	1,636	1,279
202	-19,64	8,720	2,953
12	-19,91	4,088	2,022
16	-21,41	0,290	0,538
14	-21,19	0,241	0,491
39	-21,37	0,407	0,638
	12 16 14 39 202 12 16 14	202 9,56 12 8,99 16 6,04 14 6,25 39 6,38 202 -19,64 12 -19,91 16 -21,41 14 -21,19	202 9,56 2,644 12 8,99 1,794 16 6,04 1,122 14 6,25 1,805 39 6,38 1,636 202 -19,64 8,720 12 -19,91 4,088 16 -21,41 0,290 14 -21,19 0,241

den δ^{13} C-Werten der Schweine hin (t=0,7608, d.f. = 23,786, p-Wert=0,454). Das könnte zumindest für die Aufnahme pflanzlicher Nahrung (δ^{13} C-Werte) beider Formen bedeuten, dass diese annähernd ähnlich gewesen sein muss, obgleich theoretisch davon auszugehen ist, dass den vom Menschen abhängigen Hausschweinen anderes Futter zur Verfügung gestanden hat als der Wildform.

⁴ Taxonomie nach Gentry u.a. 2004.

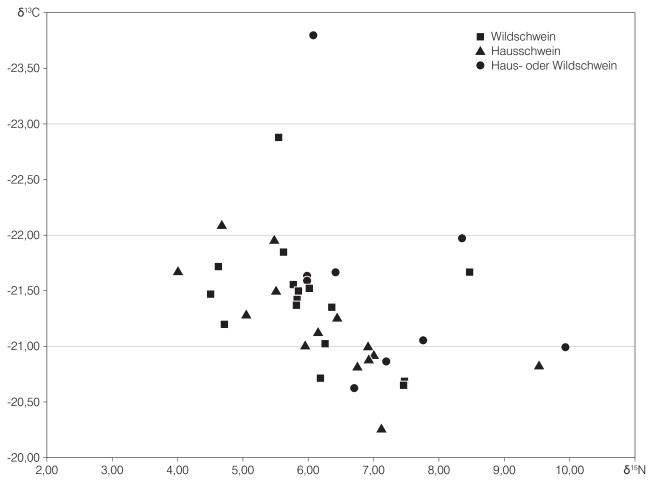


Abb. 2. Korrelationsdiagramm von δ^{15} N und δ^{13} C von morphologisch bestimmten Skelettresten von Hausschweinen (*Sus domesticus*), Wildschweinen (*Sus scrofa*) sowie nicht näher bestimmbaren Haus- oder Wildschweinen (*Sus spec.*).

Die Trennung der Werte von Wölfen und Hunden auf Basis der isotopischen Daten ist ebenfalls nicht eindeutig (Tab. 2). Die Mittelwerte aus der Grundgesamtheit verdeutlichen zwar, dass Hunde insgesamt einen um fast 1,0 ‰ höheren angereicherten δ¹⁵N-Wert als die Wölfe haben, zugleich variiert der Wert aber stärker und entsprechend dem Welch t-Test (Abb. 3) ließe sich maximal von einer Tendenz sprechen. Auch im Hinblick auf die Grundgesamtheit im Mittel des δ^{13} C-Wertes unterscheiden sich Wölfe und Hunde nur geringfügig, variieren stark und lassen sich isotopisch nicht verlässlich voneinander abgrenzen. Betrachtet man die Einzelwerte, so dürfte zunächst die große Zahl Proben von Hunden (n = 202) gegenüber der nur geringen Zahl von Wölfen (n = 12) darauf hinweisen, dass Überschneidungen mit Hunden unausweichlich sind. Drei Proben aus Rosenhof fallen jedoch durch höhere Stickstoffwerte aus der Grundgesamtheit heraus (Abb. 4 �). Ähnlich wie bei den Schweinen sollte man grundsätzlich davon ausgehen dürfen, dass es zwischen Hunden und Wölfen Unterschiede in der Nah-

Nitrogen

Welch two sample t-test: Dog vs. Wolf t=1.7408, d. f.=13.904, p-value=0.1038 alternative hypothesis: true difference in means is not equal to 0 95 % confidence interval: -0.1662246 1.5939590 sample estimates: mean of x mean of y 9.704284 ./. 8.990417

Carbon

Welch two sample t-test: Dog vs. Wolf t=0.5223, d. f. = 15.553, p-value = 0.6088 alternative hypothesis: true difference in means is not equal to 0 95 % confidence interval: -1.020636 1.685875 sample estimates: mean of x mean of y -19.58138 ./. -19.91400

Abb. 3. Daten des Welch t-Tests.

rungszusammensetzung gegeben haben muss. Hunde werden sicherlich, wenn auch nicht regelmäßig, Zugang zu menschlichen (verarbeiteten) Nahrungsbestandteilen gehabt haben und ihr Nahrungsspek-

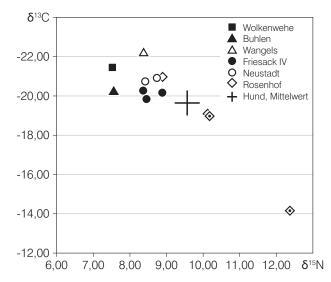


Abb. 4. Korrelation des δ^{15} N- und δ^{13} C-Mittelwertes von Hunderesten (+) sowie δ^{15} N- und δ^{13} C-Werte von morphologisch bestimmten Wölfen aus verschiedenen Fundorten. Gefüllte Signaturen: Binnenlandfundplätze mit Bezug zu größeren Gewässern; offene Signaturen: Küstenfundplätze der Ostsee; \diamond auf statistischer Grundlage als Wolf vermutet.

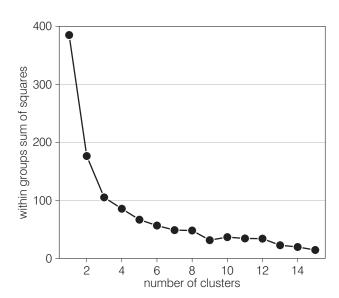
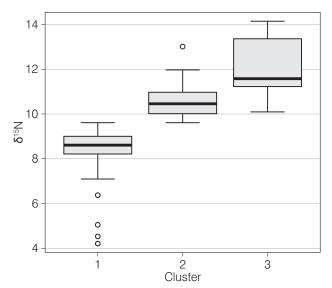
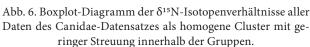


Abb. 5. Darstellung der Fehlerquadratsumme gegen die Clusteranzahl als Ergebnis der Clusteranalyse.


Tab. 3. Mittelwerte und Standardabweichungen von unkorrigierten δ^{13} C- und δ^{15} N-Werten aus Clustern sowie Ergebnisse des Games-Howell-Tests auf Clusterunterschiede. Abkürzungen: sd Standardabweichung; Cl. Cluster; Gr. Gruppe; t Testwert; d. f. Freiheitsgrad; p Wahrscheinlichkeit.


Stichprobenumfang (n)		Mean	sd	Games-Howell-Test gegen	t	d.f.	p
δ^{13} C							
Cluster 1	108	20.47	1.00	Cl. 1:2	2,211	68,188	0,00748
Cluster I	108	-20,47	1,09	Cl. 1:3	18,858	25,135	<0,001
Cluster 2	62	-21,01	1,76		40.400	25045	
Cluster 3	23	-12,73	1,90	Cl. 2:3	18,189	36,846	<0,001
$\delta^{15}N$							
Clarata 1	100	0.40	0.00	Cl. 1:2	16,636	88,158	<0,001
Cluster 1	108	8,48	0,88	Cl. 1:3	13,051	26,785	<0,001
Cluster 2	62	10,62	0,76	Cl 22	F 242	20 127	40 001
Cluster 3	23	12,08	1,26	Cl. 2:3	5,242	28,127	<0,001

trum sollte daher anders als das der Wölfe gewesen sein. Diese Annahme müsste sich demzufolge in den Isotopenwerten der morphometrisch getrennten Wölfe und Hunde niederschlagen.

Das morphometrische Verfahren kann sich jedoch in manchen Fällen als problematisch herausstellen, was beispielsweise bei der Bestimmung des Hundes von der Wurt Jemgumkloster zu sehen war (KÜCHELMANN 2009, 59 ff.). Angesichts dieser Problematik gerät diese Form der Bestimmung von Wölfen und Hunden auf der Grundlage der Isotopendaten in den Verdacht, auch Ausnahmen zuzulassen. Wir haben daher die Canidae-Daten einer Clusteranalyse unter-

zogen, um nach Strukturen zu suchen, die als Handreichung für ernährungscharakteristische Isotopensignaturen herangezogen werden können. Das gewählte Verfahren vereinigt jene Proben zu einer Gruppe, die untereinander kleinste Distanzen aufweisen und sich daher in der Isotopensignatur am ähnlichsten sind. Mittels des so genannten Elbow-Kriteriums lässt sich festlegen, dass bei einer 3-Cluster-Lösung ein relativ starker Heterogenitätszuwachs vorliegt (Abb. 5). Der Games-Howell-Test weist zudem darauf hin, dass die Gruppenunterschiede signifikant und beim δ^{15} N am deutlichsten ausgeprägt sind (Tab. 3).

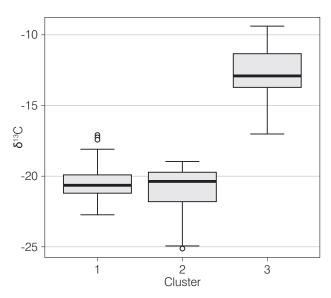


Abb. 7. Boxplot-Diagramm der δ^{13} C-Isotopenverhältnisse aller Daten des Canidae-Datensatzes als homogene Cluster mit geringer Streuung innerhalb der Gruppen.

Tab. 4. Isotopie und Zuordnung der visuell-morphologischen Wolfsfunde in Clustern.

		Koordinate	$\delta^{15}N$	$\delta^{13}C$	C:N	bestimmt als (morphomet	risch) Cluster
229	Wolkenwehe LA 154	Q. 474	7,52	-21,45	3,39	Wolf	1
159	Buhlen	Bu 802	7,56	-20,25	3,29	Wolf	1
40	Wangels LA 505	Sn 11; s: 86–86,5; e: 79,5–8	0 8,36	-22,21	3,18	Wolf	1
238	Friesack IV	K. II	8,37	-20,23	3,17	Wolf	1
264	Friesack IV	Sn B; K. II, Nr. 24	8,46	-19,82	3,30	Wolf	1
239	Friesack IV	K. II	8,90	-20,15	3,18	Wolf	1
111	Neustadt LA 156	96; n: 100,5; e: 110,5	8,43	-20,71	3,27	Wolf	1
119	Neustadt LA 156	38; n: 98-99; e: 112-123	8,75	-20,88	3,28	Wolf	1
310	Rosenhof LA 58	Ros 70; 140	8,89	-20,95	3,15	Wolf	1
304	Rosenhof LA 58	Ros 80 XIX; 354m	10,14	-19,11	3,26	Wolf	2
303	Rosenhof LA 58	Ros 80 XIX; 369p	10,15	-19,05	3,19	Wolf	2
305	Rosenhof LA 58	Ros 80 XIX; 358l	12,37	-14,17	3,21	Wolf	3

Als Ergebnis der Clusteranalyse werden relativ homogene Cluster gebildet. Allerdings zeichnet sich Cluster 3 in beiden Isotopenverhältnissen durch die größte Standardabweichung aus. Zwischen Cluster 1 und Cluster 3 beträgt die Differenz des mittleren δ^{15} N-Wertes sogar eine Trophiestufe (Abb. 6), wobei sich Cluster 3 aus 23 Funden der litoralen Fundstellen Baabe, Neustadt, Siggeneben-Süd und Rosenhof zusammensetzt. Die Isotopenverhältnisse in diesem Cluster liegen deutlich über δ^{15} N > 10 ‰, beim δ^{13} C sind es sogar > –17 ‰ (Abb. 7). Diese Werte lassen die Vermutung zu, dass die Tiere einen relativ hohen Anteil mariner Nahrung zu sich genommen haben.

Betrachtet man die Einordnung der visuell-morphologisch bestimmten Wölfe aus dem Datensatz fällt auf, dass neun Funde dem Cluster 1 mit den am stärksten abgereicherten Werten zugeordnet wurden (Tab. 4). Darunter befinden sich ebenfalls Wölfe aus litoralen Fundstätten, die als Aasfresser zumindest teilweise Zugang zu gestrandeten Fischen und Meeressäugern gehabt haben dürften. Die drei verbleibenden mutmaßlichen Wölfe aus Rosenhof sind durch relativ hohe δ^{15} N-Werte charakterisiert und wurden den beiden anderen Clustern zugeordnet.